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Ground-state configurations for Toom cellular automata: Experimental hints

Danuta Makowiec*
Institute of Theoretical Physics and Astrophysics, Gdansk University, ulica Wita Stwosza 57,

80-952 Gdansk, Poland
~Received 30 April 1997!

With computer simulations we investigate properties of stationary states of cellular automata with spins
governed locally by the Toom majority rule; i.e., three neighbors, north, east, and center, vote for a next time
step state of a center spin on a square lattice with periodic boundary conditions, as the candidates on ground
states for the thermodynamic system arise. In particular, we compare the cluster development calculated
according to the mean-field approach to experimental data, and carefully study critical phenomena similar to
the phase transitions of the first and second types appearing in the model.@S1063-651X~97!03511-3#

PACS number~s!: 05.50.1q, 05.70.Jk
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I. INTRODUCTION

Probabilistic cellular automata are discrete, usually n
reversible dynamic systems for which there exists an exp
tation that they can be included as objects of equilibri
statistical mechanics@1–4#. In general, the stationary distr
bution of trajectories for any stochastic model may
viewed as a canonical distribution under an effective Ham
tonian on the space of trajectories, in which each configu
tion interacts with its predecessor in time. The interact
energy in such a space is equal to the logarithm of the
responding transition probability@5#. This general property
applied to the cellular automata provides that the station
measurem arising on a configuration spaceX of cellular
automata becomes equivalent to the equilibrium model of
so-called generalized Ising model in (d11) dimensions
@1–3#. However, the parameters of this (d11)-dimensional
generalized Ising model are dependent on each other, w
results in, for example, the free energy of the system be
identically equal to 0@6#. Moreover, the projection back t
the d-dimensional system loses the notion of the Ham
tonian. Hence, the meaning of the so-called Gibbs meas
that is, the fundamental measure associated with every e
librium statistical model@5,7#, is lost also.

Therefore, establishing the relation between cellular
tomata systems and equilibrium systems is under cons
investigation@8,4#. Not having the expressions for the inte
action energy between objects responsible of the cellular
tomata behavior, one can try to search for relations to o
fundamental notions of equilibrium statistical mechani
Two of them, the phase diagram and the ergodicity@5,7#, are
of basic interest in the present paper. The phase diagram
any system provides division in the system parameter sp
into separate areas where the so-called pure phases ex
coexist. The stationary states of cellular automata can
considered as the pure phases of some thermodynamic
tem and so one can ask for the phase diagram in suc
system. The ergodic properties of a cellular automata sys
are understood as the dependence of the stationary stat
initial configurations@3#. By the stationary state of cellula
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automata we mean the state that is represented by a me
arising from the statistic properties obtained from avera
over a great number of cellular automata stationary confi
rations.

In the present paper we concentrate on cellular autom
acting locally under the majority rule, called the Toom ru
@9,2#:

s i , j~ t11!5sgn@s i , j~ t !1s i , j 11~ t !1s i 21,j~ t !#, ~1!

where Ni , j5@s i , j (t),s i , j 11(t),s i 21,j (t)# are center, east
and north nearest neighbor spins of thex5( i , j )PL site on
the square lattice, respectively.

The Toom automata dynamics, perturbed by rand
noise that mimics temperature effects, has been investig
rigorously by Lebowitzet al. @3#. At a high level of thermal
noise, due to the fast decay of correlations between spins
Gibbsianess of the Toom system has been proved rigorou

For the low level or in the absence of noise this system
known to be nonergodic; i.e., the stationary state depend
the initial configuration@2,10#. The phase diagram in th
space of the external magnetic field for these automata
been studied numerically by Bennett and Grinstein@2#. Their
comparison of the Toom automata to the standard Is
model indicated that stationary states with the superflu
property existing within the Toom model are the source
the basic difference between the models compared.

The Gibbsian versus non-Gibbsian nature of the To
system at low temperature is under continuous question
@11,12#. Since the majority rules appear in the renormaliz
tion group transformations as the local rule for the so-cal
block spin interaction@7,13#, properties of the Toom mode
are important to study.

The rigorous background of the zero-temperature therm
dynamic investigations has been given by Pirogov and S
~see@5,14#!. The idea of the Pirogov-Sinai theory consists
that the low-temperature diagrams are small deformation
the zero-temperature diagrams and the low-temperature
Gibbs distributions describe only small local distortions
stable zero-temperature ground-state configurations. Th
fore, after examining the phase diagram for determinis
Toom cellular automata we will investigate the influence
the thermal noise on this phase diagram.
5195 © 1997 The American Physical Society
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5196 56DANUTA MAKOWIEC
In the case of square cellular automata with perio
boundary conditions the general relation between prope
of the local rule and configurations to which the evolution
attracted has been phenomenologically recognized@15#. It
has been found that the stationary configurations arisen f
the random initial configurations are those on which the lo
rule would establish globally a common shift of a state of
same neighbor. To identify these basic shift maps in To
local rule let us specify,q0 , . . . ,q7, the eight basic neares
neighbor states, called neighborhoods:

q05S 2

2 2 D , q15S 1

2 2 D ,

q25S 2

1 2 D , q35S 2

2 1 D ,

q45S 1

1 2 D , q55S 1

2 1 D ,

q65S 2

1 1 D , q75S 1

1 1 D . ~2!

The Toom rule~1! indicates three basic shift maps that a
involved in the Toom dynamics: the center spin shift, t
northern spin shift, and the eastern spin shift. Thus one
rewrite ~1! in the three forms that correspond to these shi

s~ i , j !~ t11!5s i , j~ t !22@xq2
~N~ i , j !!1xq5

~N~ i , j !!#,

~ i , j !~ t11!5s i 21,j~ t !22@xq1
~N~ i , j !!1xq6

~N~ i , j !!#, ~3!

s~ i , j !~ t11!5s i , j 11~ t !22@xq3
~N~ i , j !!1xq4

~N~ i , j !!#,

with xqk
denoting the characteristic function of theqk

neighborhood state. Namely, ifqk5(Nk ,Ck ,Ek) then

xqk
~N~ i , j !!5 1

8 ~Nk1s~ i 21,j !!~Ck1s~ i , j !!~Ek1s~ i , j 11!!.

Let us note that the three shifts listed in Eq.~3! are
equivalent to each other in the global shift adjusting proc
because they point to the same number of neighborhood
i.e., two neighborhoods, which do not obey the given s
operation. Hence, the maximal list of so-called exclud
blocks must contain all six neighborhood states:q1 , . . . , q6
and, therefore, the stationary configurations resulting fr
the Toom rule will be built of the remaining two neighbo
hoods.

However, the thermodynamic properties of the Too
model such as ergodicity or critical changes in station
states cannot be explained within the geometric-dynamic
proach presented above.

This paper is organized in the following way: First,
Sec. II, we indicate the discrepancy between the results
ing from the statistical approach via the mean field meth
proposed by Gutowitzet al. @16,17# adapted to suitably stud
the neighborhood development@18,19#, and the results of
simulations. The failure of the standard cellular autom
c
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statistical methods becomes the motivation for our furt
studies. In Sec. III we present results of examinations of
ergodic properties in the Toom deterministic model, i.
without noise, on the square lattice imposed with perio
boundary conditions. The influence of the boundary con
tion is tested to extract properties that depend on the fi
lattice size. Then, the set of zero-temperature ground-s
configurations is specified. We close this section with
propositions that characterize both the set of ground st
and the conditions under which the system is led to the p
ticular ground state. This latter proposition results from t
so-called damage spreading investigations@20–22# that al-
low one to examine the basin boundaries between attrac
stationary configurations. Section IV is aimed at verificati
of the stability of the ground-state configurations with r
spect to the stochastic perturbation; i.e., the probabili
Toom cellular automata are simulated. The critical dep
dence of the stationary state on the noise is tested with
standard Monte Carlo method@23,24# and scaling critical
exponents are extracted to characterize the phase trans
arisen. In the last section we comment on the crucial ob
vations.

II. STATISTICAL INVESTIGATIONS

The basic idea of the statistical methods leading to
stationary measure consists in the application of the fam
Kolmogorov consistency theorem. This theorem assures
under the so-called self-consistency condition, the set of
ditive and positive function defined on the cylinder sets o
given configuration space extends uniquely to a measure
fined on the whole configuration space. Therefore the s
able assignment of probabilities to the finite configuratio
of a lattice~cylinder sets here are usually called blocks! can
lead to the proper probability measure~called the block mea-
sure!. However, the real problem occurs in arranging diffe
ent block measures into a sequence that in the limit will te
to the stationary measure adjusted to the given dynamic
cess.

Thus, to apply statistical tools to cellular automata o
needs to consider the proper hierarchy of self-contai
blocks, which are consistent with each other and for wh
the transition probabilities between the layers in this hier
chy are closely related to cellular automata dynamics.

For our investigations we choose blocks built on the b
of the Toom neighborhood~2!. This means that we conside
the hierarchy of blocks:

~1! B0, one spin blocks:~a!.
~2! B1, blocks of nearest neighbors:

S b

a cD .

~3! B2, blocks of next-to-nearest neighbor blocks:

S d

b e

a c f
D .

~4! . . . ., .
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56 5197GROUND-STATE CONFIGURATIONS FOR TOOM . . .
It is easy to see that the blocks of this family do not gi
a unique cover to other finite blocks possible on the latti
Therefore, the blocks introduced cannot satisfy the s
consistency condition. However, the blocks from differe
layers of this hierarchy are consistent with each other
dynamic relations. This last feature allows one to study
development of correlations in the system and, moreove
observe the blocks from the excluded list.

Let us concentrate on the layer ofB1 blocks. The standard
method based on the Frobenius-Perron operator@18,19# ap-
plied to these blocks provides the link between the blo
probabilities in subsequential time steps as

Pn11S b8

a8 c8
D 5 (

S d

b e

a c f
D :

b85T~be
d

!

a85T~ac
b

!

c85T~c f
e

!

PnS d

b e

a c f
D ,

whereT denotes the Toom rule. The probability for a pare
neighborhood block to be expressed by conditional pr
abilities of some smaller blocks is

PS d

b e

a c f
D 5PS e

c f U d

b e

a c
D

3PS d

b e
Ub
a cD PS b

a cD .

Assuming that the conditional probabilities in the abo
formula depend only on spins that belong to the comm
part ~the standard assumption, called maximal entropy
sumption@17#! one obtains the approximate relation

PS d

b e

a c f
D 'PS b

a cD PS d

b e
U bD

3PS e

c f
U e

cD , ~5!

that is, closed with respect toB1 blocks and, therefore, eas
to use for the iteration procedure.

We iterate the formula~4! with the simplification~5! as-
suming that initially spin states are set at random with
probability p50.51 for the1 state. On the other hand, w
perform a computer simulation starting the evolution w
typical initial configurations prepared by a random toss at
probability p50.51 for the1 state. At each time step th
distribution of neighborhood states from the list~2! is calcu-
lated. In Fig. 1, we plot the results of the successive ite
tions of theB1 block probabilities and the averages of t
results obtained in computer experiments. The discrepa
between these curves is noticeable after just a few steps.
maximum entropy assumption, which randomly scatt
blocks all over the configuration, breaks the developmen
correlations between spins, and therefore changes the la
configuration faster than the simulation provides.
.
f-
t
a
e
to

k

t
-

n
s-

e

e

-

cy
he
s
f

ice

One can hope that by introducing larger blocks these
crepancies would vanish. However, it is easy to observe
larger blocks only cause greater complication to a few ini
steps of the iteration. Blocks of any size will soon appear
small to reconstruct growing with time dependencies
tween spins, because of the steady presence of the adju
spin states process. This process is due to the special p
erty of Toom cellular automata called theeroder property
@9#. This property implies that any finite island made of o
spin state disappears at finite time steps.

In the Toom cellular automata this property is effected
the generic ability of this system to produce movingflat
interfaces. The flat interface is a straight line on a lattic
configuration that separates the phase of (1) from the phase
of (2) @7#:

1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 2 2 2

stable flat interface

2 1 1 1 1 1

2 2 1 1 1 1

2 2 2 1 1 1

2 2 2 2 1 1

2 2 2 2 2 1

moving flat interface. ~6!

When one considers the Toom model on a triangular lat
@1,3# then all flat interfaces are mobile. The Toom mod
considered on a square lattice~sometimes this system i

FIG. 1. Distribution of neighborhoods:q0 , . . . ,q7 obtained by
simulation~denotedqsim) and by iteration~denotedq iter). The spe-
cial shape ofq3

iter is induced by the applied maximal entropy a
sumption.



r-
n
o

he

ls
h
igi

e
al
ra

a

ys

si

st
o

ac
ig
ta

e
l

he
at
en
-
ly

i
ce
e
e

e

pe
tio

m
e

eas
.
ion
u-
on
ion
ary
re-
e

by
b-

ura-

tc.
gu-

the
the

of

ns
ba-

een
ary

tion

e
t in

5198 56DANUTA MAKOWIEC
called the NEC system@9,2#! possesses two stable flat inte
faces, horizontal and vertical, and the third one is diago
moving southwestward regardless of which phase is
which side of the interface. This free propagation of t
flat interface is supposed to be responsible for interaction
any distant spins. The flat-interface configurations, a
called superfluousconfigurations, can be considered as t
proposition of distinct thermodynamic phases from the or
nal Ising homogeneous phases: (1) and (2).

III. SET OF ZERO-TEMPERATURE CONFIGURATIONS

To fix the set of zero-temperature configurations we p
form a computer experiment: Beginning with typical initi
configurations, i.e., configurations where spin states are
domly set with some fixed probabilityp to toss the1 state
on the square latticeL3L with periodic boundary condi-
tions, we observe the time development of cellular autom
with ~1! local rule up to 5L time steps. In Figs. 2~a!–2~e! we
collect results of these experiments together with the anal
of the obtained results.

Figure 2~a! presents the average time^T& by means the
number of evolution steps that is needed by the system
reach stabilization. These results provide both the lattice
L and the initial state characterizationp influence. The aver-
age time^T& normalized by the number of spins to adju
i.e., divided byL2, indicates the exponential dependence
p when pP(0,4) and the polynomial dependence onL
within the samep interval; see Fig. 2~b!. Our estimations
lead to the formula

^T~L,p!&5L221.82e20.156p
e4.98pL0.045

for p,0.4. ~7!

If p is approaching 1/2, the increase in time steps to re
stabilization depends on the lattice size differently; see F
2~c!. This is thep area where the Toom cellular automa
lose ergodicity. For each lattice size there exists ap interval
aroundp51/2, where the stationary states of different typ
can occur@10#. Figure 2~d! presents the distribution of fina
configurations if initial states are random withp51/2 and for
different lattice sizes. We note that with the growth of t
lattice size, the probability of obtaining the stationary st
with the flat interface stabilizes at the value 1/3 indep
dently of the lattice dimension@the more complicated pat
terns like zigzag configurations have been observed on
few times:L548 ~once!, L5384 ~twice!, L5500 ~twice!#.

Comparing the development of the cluster structures
distinct lattices by size we test the finite lattice size influen
Figure 2~e! shows the probability of finding a spin in th
downstate on a configuration at the fixed moments of tim
t548, . . . ,500 and fordifferent lattice sizesL548, . . . ,500
but keeping alwayst<L.

The above results lead to the following observations:
~1! The periodic boundary conditions break the free d

velopment of randomly scattered homogeneous islands
clusters; the process of adjusting these clusters to the
odic boundary conditions increases the time to stabiliza
to approximately 2L.

~2! The final stationary configurations for the Too
model with periodic boundary conditions can be group
into the following classes: homogeneous with all spinsup;
al
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homogeneous with all spinsdown; flat-interfaceconfigura-
tions; zigzagconfigurations— there are two separated ar
with different flat-interfaceconfigurations on a final pattern

On the other hand, the idea explained in the Introduct
of the local shifts’ competition that drives the cellular a
tomata evolution to a configuration on which the comm
global shift can be performed indicates the close relat
between the geometric properties of the obtained station
patterns and the geometric properties of the lattice. The
fore, we perform the following additional experiments: w
violate the regularity of the boundary horizontal condition
introducing the length of rows at random. The results o
tained in these experiments provide the stationary config
tions classification: homogeneous pattern with all spinsup;
homogeneous pattern with all spinsdown; patterns with two
horizontal stripes; patterns with four horizontal stripes, e
Hence, both the vertical and diagonal flat interface confi
rations are not observed.

Therefore, let us conclude our results.
Proposition 1:
~A! The list of possible candidates for ground states in

Toom model on the square lattice is determined by
boundary conditions assigned to the system.

~B! The periodic boundary conditions fix the set
ground states to

X05$$all~1 !%,$all~2 !%, $flat-interface%%. ~8!

The damage spreading study@20,21# of the area where
Toom cellular automata with periodic boundary conditio
loses ergodicity has provided the fractal structure of the
sin boundary between the attracting ground states@22#.
Moreover, the detailed observation of the distance betw
the configurations that are attracted to the different station
configurations results in the following proposition.

Proposition 2:
~A! If an initial configuration s0 is led to any flat-

interface configuration,

s0→ t→`~flat interface!,

then there always exists at least one such initial configura
s distinct froms0 by one spin state such that spins

s→ t→`H all spins up

other flat interface~same type of stripes ass0!.

all spins down

~B! If an initial configurations0 is led to any homoge-
neous configuration, i.e.,

s0→ t→`H all spins up

all spins down

and if there existss distinct froms0 by one spin state such
thats is led to the different stationary configuration froms0,
then it is always that

s→ t→`flat interface~all types!.

Hence, the typical initial configurations that led to th
flat-interfacestationary configurations form a dense subse
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56 5199GROUND-STATE CONFIGURATIONS FOR TOOM . . .
FIG. 2. ~a! Mean time to reach the stabilization with respect top of an initial state andL lattice size. The averages are made after 3
experiments for each lattice size:L524,48,96,192,384,500. The STD error for these results are included.~b! ln plot of the mean time of
adjusting a single spin state for the lattice sizeL524,48,96,192,384,500 vsp ~the top plot! and ln-ln plot of the mean time of adjusting
single spin state for differentp of initial typical configurationp:0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4, vs lattice sizeL ~the bottom plot!. Values
denoted bya correspond to the linear regression for the particular curves.~c! Maximal mean time for Toom system to reach the stabilizat
vs lattice sizeL. Initial configurations are random withp51/2. The parametera provides the linear regression for the data.~d! Distribution
of final configurations among the three main classes: all spinsup, all spinsdown, and flat-interfaceconfigurations vs lattice sizeL. ~e!
Probability of finding a spin in thedownstate on lattices with different sizes:L524,48,96,192,384,500 and at fixed time steps. The mom
of observation are chosen to be less than or equal to the given lattice size.
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FIG. 3. Two-point correlations between spins from the stationary configurations vs lattice sites for different levels of the error« : ~a!
«50.08,~b! «50.09,~c! «50.10,~d! «50.19. Results are presented as the contour graphs. The point (0,0) means the center of a latt
dotted lines divide the major intervals into 5 equal parts.
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the space of initial random configurations at the basin bou
aries of both attracting homogeneous configurations in
Hamming distance topology@21#.

IV. GROUND-STATE PROPERTIES

Ground states of the thermodynamic lattice system wh
sites are occupied by a discrete systems with a finite s
space are known to satisfy the so-called Peierls’s condi
@5,7,14#. This condition states that there exists an essen
energy gap between any ground state and other states.
gap makes the ground states stable against the small pe
bation. In the subsequent experiments we test the stabilit
ground states arising from Toom cellular automata. Beg
ning the evolution with the ground state, we observe chan
d-
e

re
te
n
al
his
ur-
of
-

es

appearing on the stationary states caused by the the
noise. The thermal noise is introduced to the determini
dynamics~1! by the standard« error @3#, i.e., by setting the
probability « that the system locally acts against the Too
rule. The changes observed are represented as the two
correlation function of spin states corr(x,y).

Our results for homogeneous (1) initial configuration are
collected in the series of plots, Fig. 3, presenting data ver
different error levels« : 0.08,. . . ,0.19.

It occurs that there are three areas of stationary confi
ration dependence on the level of the noise«:

— «,0.08 : The correlation function takes values signi
cantly distinct from zero for the four nearest neighbo
Spins separated by more than one lattice unit are indep
dent. The total magnetization of the stationary configurat
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56 5201GROUND-STATE CONFIGURATIONS FOR TOOM . . .
is greater than 0.63, which means that the probability
finding a spin inup state isp.0.9.

— 0.08,«,0.20: The rapid change in the stationary co
figuration properties appears when the noise param
crosses 0.08. The correlations between spins separated
to twenty units appear. Notice that dependencies betw
spins reflect the geometry of Toom dynamics—the corre
tion between spins lying along the diagonal SW-NE is
least two times stronger than that between spins on the o
diagonal. We assume that with crossing the value of 0
with « the equivalent development of homogeneous clus
of both types begins and, therefore, one can say that
system is about at the phase transition of the second t
The Gibbsian nature of the stationary states appearing at
critical interval by studying the locality of the interaction
arisen has been carefully considered in@12#. The finite lattice
size studies based on the fourth order magnetization cu
lant dependence on the lattice size have provided«cr
'0.09160.002 for the Toom system in the thermodynam
limit. The critical parameter responsible for the finite latti
size effectn has been found,n50.9060.02 @12#. In the
present, we estimate the remaining critical parameters
characterize completely the scaling properties of the To
system in a neighborhood of«cr . For equilibrium thermody-
namic systems these properties are supposed to be inde
dent of local interactions@5,23# and therefore determine th
universality class of a considered system.

The first parameterb results from the decay of the mea
magnetization per spin ^m& when «↗«cr , i.e.,
^m&}(«cr2«)b for «,«cr; see Fig. 4~a!. The second param
eterg arises from dependence on temperature of the sus
tibility x and it can be extracted from the decay of fluctu
tions of the mean magnetization per spin after crossing«cr
~when ^m&'0), i.e., x}^m2&}(«2«cr)

2g for «↘«cr ; see
Fig. 4~b!.

The standard scaling theory@23# states that these tw
critical parameters,b'0.99 andg'0.45, determine the val
ues of the two remaining critical parametersa andd in the
following way: a522g22b'20.45 and d511g/b
'1.45, which yields the fractal dimension for this pha
transition df'1.18. The surprising~because it is negative!
value ofa scales the unknown function~the analogs of the
thermodynamic free energy function! at u«2«cru→0 with the
power 210.45.

— «.0.20: The length of observed dependencies
tween spins decays but it decays so slowly that it is diffic
to point to the sharp limit of this« interval. However, when
the error level exceeds 0.20 since the magnetization of
whole configuration is zero and the correlations are zero
spins separated further than one lattice unit, we can cons
these stationary configurations as random. Namely, the
responding stationary measure is of the Bernoulli type w
p51/2.

The analogous simulations are performed when the in
configuration is of theflat-interfacetype. It appears that in
the case of«,0.08, if the thermalization time is left long
enough, e.g., longer than 100 000 time steps, then the
interface structures completely disappear. Either the (1) or
the (2) phase remains on the lattice. To learn more ab
this phenomenon let us consider the role played by the s
belonging to the interface between the homogeneous ph
f

-
er
up

en
-
t
er
8
rs
he
e.
is

u-

to
m

en-

p-
-

-
lt

e
r
er
r-

h

l

t-

t
ns
ses

in the flat-interface configuration@see Eq.~6!#.
It is easy to notice that any flip of a spin from the left sid

of the vertical interface produces not decaying but propag
ing perturbation. Hence, if the temperature error occurs at
interface, then this single change will propagate until it co
verts back the perturbed interface into the flat interface
takesL time steps. There are 2L sensitive in this sense spi
sites in any stable flat-interface configuration on a squ
lattice with periodic boundary conditions. This implies th
the probability that the error occurs within these spins
equal to 2«L at each time step. In particular, for«50.005
and L5100, this probability reaches 1. The propagation

FIG. 4. ~a! ln-ln plot of the mean magnetization per spin^m& vs
«cr2« for «cr50.091,L5200. The dotted line represents the line
regression with the givenb slope.~b! The ln-ln plot of the fluctua-
tion of magnetization per spin̂m2& vs «2«cr for «cr50.091, L
5200. The dotted line represents the linear regression with
given g slope.
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the error causes the entire configuration to look like a pat
with a moving interface. Eventually, after 100 000 ste
each interface is about to be moved by 50 000 lattice un
Since each of the two interfaces moves at own speed, s
the whole configuration is transferred into the homogene
phase. However, which pure phase wins this ‘‘speed’’ co
petition seems to occur at random.

If the value of the error« increases, then together with th
interface change the ‘‘volume’’ effects appear as in the
mogeneous configurations. Therefore, the properties of
system are completely the same as in the homogeneous

Let us summarize our experiments.
Proposition:
For the Toom probabilistic cellular automata impos

with the periodic boundary conditions we have the follo
ing:

~A! The homogeneous ground-state configurations
stable against random perturbation less than 0.09, so tha
homogeneous configurations can be considered rigid gro
state configurations@7#. The rigidity of these ground state
with increasing level of« is lost— the system undergoes th
phase transition of the second type.

~B! The flat-interface configurations are not stable aga
random perturbation. There exist lattice sites that are se
tive to a single spin perturbation in the sense that the per
bation of this spin state propagates freely, causing the in
face between homogeneous phases to disappear.

V. CONCLUSIONS

Advances in computer technology allow one to des
more complex experiments and thus to obtain different
sights into the old problem. Stimulated by the McIntosh id
@25# that, thanks to both growing understanding of the s
ject and better machines, it is time to return to the very fi
topic in the cellular automata general theory, which cons
in getting good probability measures to describe autom
and their evolution, in the present paper we have repe
some of the old simulations@10#, however in a fashion tha
has guaranteed getting distinct information:

~i! We have failed with the results after applying the sta
dard mean field methods that would provide the station
measure for Toom cellular automata from the block distrib
tion properties.

~ii ! The nonergodic behavior of the system initiated
random configurations has been investigated with method
dynamic systems. In particular, we have observed the
tionary configuration development with respect to the B
noulli parameterp of the initial random configuration an
the influence of both the finite lattice size and the geome
lts
rn
,
s.
on
s
-

-
e
se.

re
the
d-

st
si-
r-
r-

n
-
a
-
t
ts
ta
ed

-
y
-

of
a-
-

y

of boundaries. On the other hand, the examination of
basin boundary between attracting configurations has poi
out the very sensitive structure of this basin boundary in
space of the initial configurations. Such a structure is ch
acteristic for chaotic systems@23,26#. We can conclude tha
periodic boundary conditions lead to the chaotic behavior
the Toom system in an area where the phenomenon of
phase transition of the first order occurs.

~iii ! We have found the scaling exponents from the beh
ior of the mean magnetization in the stationary states n
the critical point in the same way that the scaling theo
deals with equilibrium thermodynamic systems to descr
the phase transition of the second type. We have foun
qualitativy different role of the flat-interface stationary stat
from the role of the homogeneous stationary states. Altho
the flat-interface states do exist in the zero-temperature p
diagram they do not enter the nonzero-temperature ph
diagram. The presence of the flat-interface states is cause
periodic boundary conditions rather than the effect of int
actions arising from Toom local rule. Moreover, in the sta
dard kinetic Ising model, the temperature effects are stron
moderated by interactions, namely, the noise acts differe
on spins belonging to clusters from other spins~see, e.g.,
@21#!. In the Toom local dynamics there is no such a distin
tion. Therefore, the magnetization is lost more quickly~with
b'0.99! than the magnetization in the Ising model (b Ising
50.125). However, since the obtained value ofb is smaller
than 1, then some effects of Ising-type interactions such
preferences for one spin state clusters must be present in
Toom cellular automata. The weak decay of the fluctuat
that is manifested by low value ofg ~for Ising interactions
g Ising51.75) results from the superfluous property of the
agonal flat-interface configurations.

Finally, sometimes the noise effect is introduced to t
cellular automata system as the probability that locally
rule does not obey the deterministic rule, which denotes
with probability « the results of the rule are random. How
ever, the random choice of a spin state denotes that w
probability 1

2 « the state will agree with the deterministic ru
result and with probability1

2 « the state opposes the rule
Hence, such a system performs the deterministic rule w
12 1

2 « and acts oppositely with probability12 «. This influ-
ences the«cr value but does not influence the scaling pro
erties.
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