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Ground-state configurations for Toom cellular automata: Experimental hints
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With computer simulations we investigate properties of stationary states of cellular automata with spins
governed locally by the Toom majority rule; i.e., three neighbors, north, east, and center, vote for a next time
step state of a center spin on a square lattice with periodic boundary conditions, as the candidates on ground
states for the thermodynamic system arise. In particular, we compare the cluster development calculated
according to the mean-field approach to experimental data, and carefully study critical phenomena similar to
the phase transitions of the first and second types appearing in the ®He$3-651X97)03511-3

PACS numbds): 05.50+q, 05.70.Jk

I. INTRODUCTION automata we mean the state that is represented by a measure
arising from the statistic properties obtained from averages
Probabilistic cellular automata are discrete, usually nonover a great number of cellular automata stationary configu-
reversible dynamic systems for which there exists an expedations.
tation that they can be included as objects of equilibrium In the present paper we concentrate on cellular automata
statistical mechanicgl—4]. In general, the stationary distri- acting locally under the majority rule, called the Toom rule
bution of trajectories for any stochastic model may be[9,2]:
viewed as a canonical distribution under an effective Hamil-
tonian on the space of trajectories, in which each configura- oij(t+D)=sgrio; (D +0ij1(O+o-1;(O] D)
tion interacts with its predecessor in time. The interaction
energy in such a space is equal to the logarithm of the corwhere A; j=[a; ;(t),0; 4+ 1(t),07_1;(t)] are center, east,
responding transition probabilityp]. This general property and north nearest neighbor spins of the(i,j) € £ site on
applied to the cellular automata provides that the stationarshe square lattice, respectively.
measurep arising on a configuration spack of cellular The Toom automata dynamics, perturbed by random
automata becomes equivalent to the equilibrium model of th@oise that mimics temperature effects, has been investigated
so-called generalized Ising model id{1) dimensions rigorously by Lebowitzet al.[3]. At a high level of thermal
[1-3]. However, the parameters of thid{ 1)-dimensional noise, due to the fast decay of correlations between spins, the
generalized Ising model are dependent on each other, whiaBibbsianess of the Toom system has been proved rigorously.
results in, for example, the free energy of the system being For the low level or in the absence of noise this system is
identically equal to 6]. Moreover, the projection back to known to be nonergodic; i.e., the stationary state depends on
the d-dimensional system loses the notion of the Hamil-the initial configuration[2,10]. The phase diagram in the
tonian. Hence, the meaning of the so-called Gibbs measurgpace of the external magnetic field for these automata has
that is, the fundamental measure associated with every equbeen studied numerically by Bennett and Grins{&ih Their
librium statistical mode[5,7], is lost also. comparison of the Toom automata to the standard Ising
Therefore, establishing the relation between cellular aumodel indicated that stationary states with the superfluous
tomata systems and equilibrium systems is under constaptoperty existing within the Toom model are the source of
investigation[8,4]. Not having the expressions for the inter- the basic difference between the models compared.
action energy between objects responsible of the cellular au- The Gibbsian versus non-Gibbsian nature of the Toom
tomata behavior, one can try to search for relations to othegystem at low temperature is under continuous questioning
fundamental notions of equilibrium statistical mechanics[11,12. Since the majority rules appear in the renormaliza-
Two of them, the phase diagram and the ergodidty], are  tion group transformations as the local rule for the so-called
of basic interest in the present paper. The phase diagram féock spin interactiorj7,13], properties of the Toom model
any system provides division in the system parameter spac&re important to study.
into separate areas where the so-called pure phases exist orThe rigorous background of the zero-temperature thermo-
coexist. The stationary states of cellular automata can beynamic investigations has been given by Pirogov and Sinai
considered as the pure phases of some thermodynamic sysee[5,14)). The idea of the Pirogov-Sinai theory consists in
tem and so one can ask for the phase diagram in such taat the low-temperature diagrams are small deformations of
system. The ergodic properties of a cellular automata systenine zero-temperature diagrams and the low-temperature limit
are understood as the dependence of the stationary states @ibbs distributions describe only small local distortions of
initial configurations[3]. By the stationary state of cellular stable zero-temperature ground-state configurations. There-
fore, after examining the phase diagram for deterministic
Toom cellular automata we will investigate the influence of
*Electronic address: fizdm@univ.gda.pl the thermal noise on this phase diagram.
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In the case of square cellular automata with periodicstatistical methods becomes the motivation for our further
boundary conditions the general relation between propertiestudies. In Sec. Il we present results of examinations of the
of the local rule and configurations to which the evolution isergodic properties in the Toom deterministic model, i.e.,
attracted has been phenomenologically recognidés]. It  without noise, on the square lattice imposed with periodic
has been found that the stationary configurations arisen frorhoundary conditions. The influence of the boundary condi-
the random initial configurations are those on which the location is tested to extract properties that depend on the finite
rule would establish globally a common shift of a state of thelattice size. Then, the set of zero-temperature ground-state
same neighbor. To identify these basic shift maps in Toontonfigurations is specified. We close this section with the

local rule let us specifydy, . .. ,97, the eight basic nearest propositions that characterize both the set of ground states
neighbor states, called neighborhoods: and the conditions under which the system is led to the par-
ticular ground state. This latter proposition results from the
- + so-called damage spreading investigatipp@—27 that al-
Yo=| - _ |, H=|_- _|, low one to examine the basin boundaries between attracting
stationary configurations. Section IV is aimed at verification

spect to the stochastic perturbation; i.e., the probabilistic

Toom cellular automata are simulated. The critical depen-

dence of the stationary state on the noise is tested with the
n n standard Monte Carlo methd®3,24 and scaling critical

. B of the stability of the ground-state configurations with re-

exponents are extracted to characterize the phase transition
arisen. In the last section we comment on the crucial obser-
vations.

- +
ﬂs=<+- +>, ﬂ7=( +)_ ) IIl. STATISTICAL INVESTIGATIONS

The basic idea of the statistical methods leading to the
The Toom rule(1) indicates three basic shift maps that areStationary measure consists in the ap_phcatlon of the famous
involved in the Toom dynamics: the center spin shift theKolmogorov consistency theorem. This theorem assures that
northern spin shift, and the eastern spin shift. Thus one cafnder the so-called self-consistency condition, the set of ad-

rewrite (1) in the three forms that correspond to these shiftsditivé and positive function defined on the cylinder sets of a
given configuration space extends uniquely to a measure de-

o j(t+ D=0 ;(t) =2 x s, (N j) + xo (N j) ], fined on the whole configuration space. Therefore the suit-
able assignment of probabilities to the finite configurations
. =g (1= . . of a lattice(cylinder sets here are usually called blockan
Gt =0oizg(t) Z[X'?l(N’("J)) +Xﬂ6(N("'))]’ ® lead to the proper probability measumalled the block mea-
sure. However, the real problem occurs in arranging differ-
ent block measures into a sequence that in the limit will tend
to the stationary measure adjusted to the given dynamic pro-

o j(t+ 1):O'i,j+1(t)_Z[Xﬁ3(Mi,j))+X64(-/\[(i,j))]a

with x5 denoting the characteristic function of théy

: cess.
neighborhood state. Namely, #f,=(Ny,C,Ey) then Thus, to apply statistical tools to cellular automata one
1 needs to consider the proper hierarchy of self-contained

X (Nii ) = 5(Nict 0i-1) (Cict 071, j) (Bict 0 o). blocks, which are consistent with each other and for which

) _ _ the transition probabilities between the layers in this hierar-
Let us note that the three shifts listed in EQ) are oy are closely related to cellular automata dynamics.
equivalent to each other in the global shift adjusting process "o, gur investigations we choose blocks built on the base
because they point to the same number of neighborhoods—z the Toom neighborhoot®). This means that we consider
i.e., two neighborhoods, which do not obey the given shifty, hierarchy of blocks:

operation. Hence, the maximal list of so-called excluded (1) Bo, one spin blocks(a).

blocks must contain all six neighborhood statés:, ..., J¢ (2) B, blocks of nearest neighbors:

and, therefore, the stationary configurations resulting from

the Toom rule will be built of the remaining two neighbor- b

hoods. (a c) _
However, the thermodynamic properties of the Toom

model such as ergodicity or critical changes in stationary
states cannot be explained within the geometric-dynamic ap- (3) B,, blocks of next-to-nearest neighbor blocks:
proach presented above.
This paper is organized in the following way: First, in
Sec. Il, we indicate the discrepancy between the results aris-
ing from the statistical approach via the mean field methods
proposed by Gutowitet al.[16,17] adapted to suitably study
the neighborhood developmefit8,19, and the results of
simulations. The failure of the standard cellular automata (4) ...., .
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It is easy to see that the blocks of this family do not give 1.0
a unique cover to other finite blocks possible on the lattice. p=0.51 .
Therefore, the blocks introduced cannot satisfy the self- %
consistency condition. However, the blocks from different 0.8 - -
layers of this hierarchy are consistent with each other via e
dynamic relations. This last feature allows one to study the e
development of correlations in the system and, moreover, tc_ o6 ~
observe the blocks from the excluded list. ’

Let us concentrate on the layer Bf blocks. The standard
method based on the Frobenius-Perron opeffdi®/19 ap- 04 4
plied to these blocks provides the link between the block
probabilities in subsequential time steps as

probability

d 0.2
b’ _ E b e i ﬁéite\ 154iler ﬁzner 1%‘rter
Pn+l ’ C/ - . Pn y 1 v\; —v_ ,
d b'=T(,) a ¢ f 0.0 | = .
(” e |a=Tqo ) 10 20 30
acf r_T®
=Ty time steps

whereT denotes the Toom rule. The probability for a parent  FIG- 1. Distribution of neighborhoods, . . ., 97 obtained by

neighborhood block to be expressed by conditional IOrob-Sim“'a“O”(denptedﬂsm) and by iteration(denoted?"®). The spe-
abilities of some smaller blocks is cial shape of9™" is induced by the applied maximal entropy as-

sumption.

d One can hope that by introducing larger blocks these dis-
Pl b e =P f b e crepancies would vanish. However, it is easy to observe that
¢ a ¢ larger blocks only cause greater complication to a few initial
steps of the iteration. Blocks of any size will soon appear too
small to reconstruct growing with time dependencies be-
: tween spins, because of the steady presence of the adjusting
spin states process. This process is due to the special prop-

Assuming that the conditional probabilities in the above®rty of Toom cellular automata called thezoder property
formula depend only on spins that belong to the comm0|{9]_- This property implies Fh_at any finite island made of one
part (the standard assumption, called maximal entropy asSPin state disappears at finite time steps.

d
b €

b
a c

XP

a C

sumption[17]) one obtains the approximate relation In the Toom cellular automata this property is effected by
the generic ability of this system to produce movifigt
d interfaces The flat interface is a straight line on a lattice
b d configuration that separates the phase-6j from the phase
Plb e *P( P( ) of (=) [7]
a ¢ b e
a c f
+ + + - - -
e e
ch f’ c)' ® T

+ + + - - =

that is, closed with respect 6, blocks and, therefore, easy + + 4+ - - -

to use for the iteration procedure. L4 o4 -

We iterate the formuld4) with the simplification(5) as-

suming that initially spin states are set at random with the stable flat interface

probability p=0.51 for the+ state. On the other hand, we

perform a computer simulation starting the evolution with - + + + + 4+

typical !nitial configurations prepared by a ranqlom toss at the - — 4 1+ o+ o

probability p=0.51 for the+ state. At each time step the

distribution of neighborhood states from the I8} is calcu- - - - + + +

lated. In Fig. 1, we plot the results of the successive itera- - - - - 4+ 4+

tions of theB; block probabilities and the averages of the _ o _ o _ 4

results obtained in computer experiments. The discrepancy
between these curves is noticeable after just a few steps. The moving flat interface. (6)
maximum entropy assumption, which randomly scatters

blocks all over the configuration, breaks the development ofWhen one considers the Toom model on a triangular lattice
correlations between spins, and therefore changes the latti¢&,3] then all flat interfaces are mobile. The Toom model
configuration faster than the simulation provides. considered on a square latti¢eometimes this system is
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called the NEC systen®,2]) possesses two stable flat inter- homogeneous with all spindown flat-interface configura-
faces, horizontal and vertical, and the third one is diagonalions; zigzagconfigurations— there are two separated areas
moving southwestward regardless of which phase is onvith differentflat-interfaceconfigurations on a final pattern.
which side of the interface. This free propagation of the On the other hand, the idea explained in the Introduction
flat interface is supposed to be responsible for interaction obf the local shifts’ competition that drives the cellular au-
any distant spins. The flat-interface configurations, alsdomata evolution to a configuration on which the common
called superfluousconfigurations, can be considered as theglobal shift can be performed indicates the close relation
proposition of distinct thermodynamic phases from the origi-between the geometric properties of the obtained stationary

nal Ising homogeneous phases:)(and (—). patterns and the geometric properties of the lattice. There-
fore, we perform the following additional experiments: we
IIl. SET OF ZERO-TEMPERATURE CONFIGURATIONS violate the regularity of the boundary horizontal condition by

introducing the length of rows at random. The results ob-
To fix the set of zero-temperature configurations we pertained in these experiments provide the stationary configura-
form a computer experiment: Beginning with typical initial tions classification: homogeneous pattern with all spips
configurations, i.e., configurations where spin states are rafmomogeneous pattern with all spidewn patterns with two
domly set with some fixed probability to toss the+ state  horizontal stripes; patterns with four horizontal stripes, etc.
on the square latticek XL with periodic boundary condi- Hence, both the vertical and diagonal flat interface configu-
tions, we observe the time development of cellular automataations are not observed.

with (1) local rule up to & time steps. In Figs.(@2)—2(e) we Therefore, let us conclude our results.
collect results of these experiments together with the analysis Proposition 1:
of the obtained results. (A) The list of possible candidates for ground states in the

Figure 2a) presents the average ting@) by means the Toom model on the square lattice is determined by the
number of evolution steps that is needed by the system tboundary conditions assigned to the system.
reach stabilization. These results provide both the lattice size (B) The periodic boundary conditions fix the set of
L and the initial state characterizatipninfluence. The aver- ground states to
age time(T) normalized by the number of spins to adjust, _
i.e., divided byL?, indicates the exponential dependence on Xo={{all(+)}.{all(-)}, {flat-interfacg}. 8
p when pe(0,4) and the polynomial dependence &n
within the samep interval; see Fig. @). Our estimations
lead to the formula

The damage spreading stufi®0,21] of the area where
Toom cellular automata with periodic boundary conditions
loses ergodicity has provided the fractal structure of the ba-
sin boundary between the attracting ground stdi23).
Moreover, the detailed observation of the distance between

i ) ) o the configurations that are attracted to the different stationary
If p is approaching 1/2, the increase in time steps to reacBonfigurations results in the following proposition.
stabilization depends on the lattice size differently; see Fig. Proposition 2:

2(c). This i_s_thep area wher.e thg Toom cell_ular. automata (A) If an initial configuration oy is led to any flat-

lose ergodicity. For each lattice size there exisfsiaterval  jnterface configuration,

aroundp=1/2, where the stationary states of different types

can occuf10]. Figure Zd) presents the distribution of final 00— 1_(flat interface,

configurations if initial states are random wijtk 1/2 and for

different lattice sizes. We note that with the growth of thethen there always exists at least one such initial configuration

lattice size, the probability of obtaining the stationary stateo distinct froma, by one spin state such that spins

with the flat interface stabilizes at the value 1/3 indepen- )

dently of the lattice dimensiofthe more complicated pat- all spins up

terns like zigzag configurations have been observed only a s, < other flat interfacésame type of stripes ag).

few times:L =48 (once, L =384 (twice), L =500 (twice)].
Comparing the development of the cluster structures in

d[stinct lattices by size we test't_he finit(_e Ia'ttice size.imfluence. (B) If an initial configurationa, is led to any homoge-

Figure Ze) shows the probability of finding a spin in the equs configuration, i.e.,

downstate on a configuration at the fixed moments of time:

t=48,...,500 and fodifferent lattice sized =48, ...,500 all spins up

but keeping always$<L. 00"t
The above results lead to the following observations:
(1) The periodic boundary conditions break the free de-anq if there existsr distinct from o, by one spin state such

velopment of randomly scqttered homogeneous islands “thato is led to the different stationary configuration frarg,
clusters; the process of adjusting these clusters to the pefiren it is always that

odic boundary conditions increases the time to stabilization
to approximately 2. o—_flat interface(all types.
(2) The final stationary configurations for the Toom
model with periodic boundary conditions can be grouped Hence, the typical initial configurations that led to the
into the following classes: homogeneous with all spips  flat-interfacestationary configurations form a dense subset in

(T(L,p))=L2 182 OBPeoml? o0 04 (7)

all spins down

“| all spins down
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FIG. 2. (@) Mean time to reach the stabilization with respecptof an initial state and. lattice size. The averages are made after 300
experiments for each lattice size=24,48,96,192,384,500. The STD error for these results are inclddebh plot of the mean time of
adjusting a single spin state for the lattice size 24,48,96,192,384,500 ys (the top ploj and In-In plot of the mean time of adjusting a
single spin state for different of initial typical configuratiorp:0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4, vs lattice kizthe bottom plox. Values
denoted bya correspond to the linear regression for the particular curfe@ddaximal mean time for Toom system to reach the stabilization
vs lattice sizel. Initial configurations are random wiiln=1/2. The parametea provides the linear regression for the ddt. Distribution
of final configurations among the three main classes: all spmsll spinsdown and flat-interfaceconfigurations vs lattice size. (e)
Probability of finding a spin in thdownstate on lattices with different sizds=24,48,96,192,384,500 and at fixed time steps. The moments
of observation are chosen to be less than or equal to the given lattice size.
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FIG. 3. Two-point correlations between spins from the stationary configurations vs lattice sites for different levels of the éajor
£=0.08,(b) £=0.09,(c) £=0.10,(d) £=0.19. Results are presented as the contour graphs. The point (0,0) means the center of a lattice. The
dotted lines divide the major intervals into 5 equal parts.

the space of initial random configurations at the basin boundappearing on the stationary states caused by the thermal
aries of both attracting homogeneous configurations in th@oise. The thermal noise is introduced to the deterministic
Hamming distance topology21]. dynamics(1) by the standar@ error[3], i.e., by setting the
probability ¢ that the system locally acts against the Toom
rule. The changes observed are represented as the two point
correlation function of spin states coxrf).

Ground states of the thermodynamic lattice system where Our results for homogeneous-| initial configuration are
sites are occupied by a discrete systems with a finite stateollected in the series of plots, Fig. 3, presenting data versus
space are known to satisfy the so-called Peierls’s conditionlifferent error levels: : 0.08,...,0.19.

[5,7,14. This condition states that there exists an essential It occurs that there are three areas of stationary configu-
energy gap between any ground state and other states. Thiation dependence on the level of the naise

gap makes the ground states stable against the small pertur-— £<<0.08 : The correlation function takes values signifi-
bation. In the subsequent experiments we test the stability afantly distinct from zero for the four nearest neighbors.
ground states arising from Toom cellular automata. BeginSpins separated by more than one lattice unit are indepen-
ning the evolution with the ground state, we observe changedent. The total magnetization of the stationary configuration

IV. GROUND-STATE PROPERTIES
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is greater than 0.63, which means that the probability of
finding a spin inup state isp>0.9.

— 0.08<£<0.20: The rapid change in the stationary con-
figuration properties appears when the noise parametel
crosses 0.08. The correlations between spins separated by u
to twenty units appear. Notice that dependencies betweer o1
spins reflect the geometry of Toom dynamics—the correla-
tion between spins lying along the diagonal SW-NE is at
least two times stronger than that between spins on the othel
diagonal. We assume that with crossing the value of 0.08
with ¢ the equivalent development of homogeneous clusters
of both types begins and, therefore, one can say that the
system is about at the phase transition of the second type
The Gibbsian nature of the stationary states appearing at this
critical interval by studying the locality of the interactions
arisen has been carefully consideredldifi]. The finite lattice
size studies based on the fourth order magnetization cumu-
lant dependence on the lattice size have providegd —— . | |
~0.091+ 0.002 for the Toom system in the thermodynamic et e’ e’ e’
limit. The critical parameter responsible for the finite lattice (4 e -
size effecty has been foundy=0.90+0.02 [12]. In the
present, we estimate the remaining critical parameters to
characterize completely the scaling properties of the Toom
system in a neighborhood ef,. For equilibrium thermody-
namic systems these properties are supposed to be indeper Y =0446 (r*=0.92)
dent of local interaction§5,23] and therefore determine the
universality class of a considered system.

The first parameteB results from the decay of the mean
magnetization per spin (m) when ¢ e, Ie.,

(MY (eg4—e)” for e<e,; see Fig. 4a). The second param-
eter y arises from dependence on temperature of the suscep
tibility x and it can be extracted from the decay of fluctua-
tions of the mean magnetization per spin after crossigg
(when(m)~0), i.e., yx(m?)x(e—ey) " ? for e\ e see
Fig. 4(b).

The standard scaling theof23] states that these two
critical parameters3~0.99 andy~0.45, determine the val-
ues of the two remaining critical parametersand & in the
following way: a=2—vy—28~-0.45 and §=1+v/B
~1.45, which vyields the fractal dimension for this phase

<m>

B = 0.995 (r >=0.996)

-2 |

et

<m2>

transitiond;~1.18. The surprisingbecause it is negatiye (b) €-8,

value of @ scales the unknown functiofthe analogs of the o _
thermodynamic free energy functipat|e — & —0 with the FIG. 4. (& In-In plot of the mean magnetization per sgim) vs
power 2+ 0.45. eq— ¢ for e,,=0.091,L=200. The dotted line represents the linear

— £>0.20: The length of observed dependencies ber_egression with_ the_ givep slope.(;o) The In-In plot of the fluctua-
tween spins decays but it decays so slowly that it is difficultfion of magnetization per spiim?) vs & —e for .,=0.091,L
to point to the sharp limit of thig interval. However, when =_200. The dotted line represents the linear regression with the
the error level exceeds 0.20 since the magnetization of th&Ven ¥ slope.
whole configuration is zero and the correlations are zero for
spins separated further than one lattice unit, we can considén the flat-interface configuratiofsee Eq.(6)].
these stationary configurations as random. Namely, the cor- Itis easy to notice that any flip of a spin from the left side
responding stationary measure is of the Bernoulli type withof the vertical interface produces not decaying but propagat-
p=1/2. ing perturbation. Hence, if the temperature error occurs at the
The analogous simulations are performed when the initiainterface, then this single change will propagate until it con-
configuration is of thdlat-interfacetype. It appears that in verts back the perturbed interface into the flat interface. It
the case of:<0.08, if the thermalization time is left long takesL time steps. There arel2sensitive in this sense spin
enough, e.g., longer than 100 000 time steps, then the flasites in any stable flat-interface configuration on a square
interface structures completely disappear. Either th¢ 6r lattice with periodic boundary conditions. This implies that
the (—) phase remains on the lattice. To learn more abouthe probability that the error occurs within these spins is
this phenomenon let us consider the role played by the spingqual to 2L at each time step. In particular, fer=0.005
belonging to the interface between the homogeneous phasesd L =100, this probability reaches 1. The propagation of
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the error causes the entire configuration to look like a patterof boundaries. On the other hand, the examination of the
with a moving interface. Eventually, after 100 000 steps,basin boundary between attracting configurations has pointed
each interface is about to be moved by 50 000 lattice unitsout the very sensitive structure of this basin boundary in the
Since each of the two interfaces moves at own speed, so@pace of the initial configurations. Such a structure is char-
the whole configuration is transferred into the homogeneouacteristic for chaotic systeni23,26. We can conclude that
phase. However, which pure phase wins this “speed” com-eriodic boundary conditions lead to the chaotic behavior of
petition seems to occur at random. the Toom system in an area where the phenomenon of the
If the value of the erroe increases, then together with the phase transition of the first order occurs.
interface change the “volume” effects appear as in the ho- (iii) We have found the scaling exponents from the behav-
mogeneous configurations. Therefore, the properties of thior of the mean magnetization in the stationary states near
system are completely the same as in the homogeneous catiee critical point in the same way that the scaling theory
Let us summarize our experiments. deals with equilibrium thermodynamic systems to describe
Proposition: the phase transition of the second type. We have found a
For the Toom probabilistic cellular automata imposedqualitativy different role of the flat-interface stationary states
with the periodic boundary conditions we have the follow-from the role of the homogeneous stationary states. Although
ing: the flat-interface states do exist in the zero-temperature phase
(A) The homogeneous ground-state configurations areiagram they do not enter the nonzero-temperature phase
stable against random perturbation less than 0.09, so that tlibagram. The presence of the flat-interface states is caused by
homogeneous configurations can be considered rigid groungberiodic boundary conditions rather than the effect of inter-
state configurationf7]. The rigidity of these ground states actions arising from Toom local rule. Moreover, in the stan-
with increasing level ot is lost— the system undergoes the dard kinetic Ising model, the temperature effects are strongly
phase transition of the second type. moderated by interactions, namely, the noise acts differently
(B) The flat-interface configurations are not stable againsbn spins belonging to clusters from other spisse, e.g.,
random perturbation. There exist lattice sites that are sensf21]). In the Toom local dynamics there is no such a distinc-
tive to a single spin perturbation in the sense that the pertution. Therefore, the magnetization is lost more quickdyth
bation of this spin state propagates freely, causing the intej3~0.99 than the magnetization in the Ising moded g

face between homogeneous phases to disappear. =0.125). However, since the obtained valuesofs smaller
than 1, then some effects of Ising-type interactions such as
V. CONCLUSIONS preferences for one spin state clusters must be present in the

) ~ Toom cellular automata. The weak decay of the fluctuation
Advances in computer technology allow one to designihat is manifested by low value of (for Ising interactions

more complex experiments and thus to obtain different |n-y|sing:1.75) results from the superfluous property of the di-

sights into the old problem. Stimulated by the Mcintosh ideaagonal flat-interface configurations.

[25] that, thanks to both growing understanding of the sub- ~ginajly, sometimes the noise effect is introduced to the
ject and better machines, it is time to return to the very firsieg|jyjar automata system as the probability that locally the
topic in the cellular automata general theory, which consist§yje does not obey the deterministic rule, which denotes that
in getting good probability measures to describe automaigith probability & the results of the rule are random. How-
and their evolution, in the present paper we have repeategler, the random choice of a spin state denotes that with
some of the old simulationsl0], however in a fashion that opapility Le the state will agree with the deterministic rule

has guaranteed getting distinct information: result and with probabilityte the state opposes the rule.
(i) We have failed with the results after applying the stan-ence such a system performs the deterministic rule with
dard mean field methods that would provide the stationar)i_%s and acts oppositely with probabilitys. This influ-

measure f0( Toom cellular automata from the block distribu-ences thes, value but does not influence the scaling prop-
tion properties. erties.
(i) The nonergodic behavior of the system initiated on
random configurations has been investigated with methods of
dynamic systems. In particular, we have observed the sta- ACKNOWLEDGMENTS
tionary configuration development with respect to the Ber-
noulli parameterp of the initial random configuration and This work was partially supported by Polish Committee
the influence of both the finite lattice size and the geometryof Science Research: project KBN 129/P03/95/09.
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